Data Reduction Method for Categorical Data Clustering
نویسندگان
چکیده
Categorical data clustering constitutes an important part of data mining; its relevance has recently drawn attention from several researchers. As a step in data mining, however, clustering encounters the problem of large amount of data to be processed. This article offers a solution for categorical clustering algorithms when working with high volumes of data by means of a method that summarizes the database. This is done using a structure called CM-tree. In order to test our method, the KModes and Click clustering algorithms were used with several databases. Experiments demonstrate that the proposed summarization method improves execution time, without losing clustering quality.
منابع مشابه
ارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کاملخوشهبندی خودکار دادههای مختلط با استفاده از الگوریتم ژنتیک
In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...
متن کاملRough subspace-based clustering ensemble for categorical data
Clustering categorical data arising as an important problem of data mining has recently attracted much attention. In this paper, the problem of unsupervised dimensionality reduction for categorical data is first studied. Based on the theory of rough sets, the attributes of categorical data are decomposed into a number of rough subspaces. A novel clustering ensemble algorithm based on rough subs...
متن کاملA Simple Yet Fast Clustering Approach for Categorical Data
Categorical data has always posed a challenge in data analysis through clustering. With the increasing awareness about Big data analysis, the need for better clustering methods for categorical data and mixed data has arisen. The prevailing clustering algorithms are not suitable for clustering categorical data majorly because the distance functions used for continuous data are not applicable for...
متن کاملThe "Best K" for Entropy-based Categorical Data Clustering
With the growing demand on cluster analysis for categorical data, a handful of categorical clustering algorithms have been developed. Surprisingly, to our knowledge, none has satisfactorily addressed the important problem for categorical clustering – how can we determine the best K number of clusters for a categorical dataset? Since categorical data does not have the inherent distance function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008